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The ability o.f uniform viscous flow under 
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The Frythe, Welwyn, Herts.? 

(Received 24 Jdy 1959) 

When a thin film of viscous fluid is produced by passing it through a small gap 
atween a roller or spreader and a flat plate, it  often presents a waved, or ribbed, 

mrface. An analysis is given here in terms of lubrication theory to show why in 
 any cases flow leading to a uniform film is unstable. Account is taken of surface 
mion which proves to be a stabilizing factor. The most unstable values of tlie 
me-number, n (characterizing the disturbance), are calculated as functions of 

dimensionless variable TIpU,, and of the geometry of the system; T is the 
surface tension, p the viscosity and U, a representative velocity of the b i d .  For 
the particular case of a spreader in the form of a wide-angled wedge, these 
predictions are compared with experimental observations. Agreement is obtained 
for values of TIpU, between about 10 and 0.1, but for smaIler values of TIpU, 
it is clear that other considerations, involving only viscous and pressure forces, 
determine the nature of the secondary flow. 

1. Introduction 
Attempts to produce uniform thin layers of very viscous fluid by rolling or 

spreading often lead to an uneven or ribbed surface. Reference to this pheno- 
‘)een made in a variety of contexts; reports have come from the tin- me 

.’ p-3 & Hoare 1941), the printing ink (Sjodahl1951), the photographic, ?+%F .’ P (3g ’ naint industries (private communications), while the matter has 
J d in the correspondence columns of the New Xcientist (Letters, 
Ncru o i  
‘Ij .itz 8 ader will perhaps be most familar with the case of ‘brush marks ’, 

whici. r when tlmk paint is applied to a flat surface by means of a bristle 
brush. - 3 resultant film, especially when just formed, usually presents a waved 
or ribbed surface where the lines of crests and troughs run roughly parallel to the 
direction of motion of the brush (see figure 1 a, plate 1). A similar ribbing pheno- 
menon can be observed when films of highly viscous fluid are formed by passing 
the fluid through a small gap under large solid rollers; if the roller is moved 
perpendicular to its axis over a flat plate, without rotation, the operation is 
termed spreading; if the roller is rolled over the surface, the operation is termed 
rolling (see figure I b , c ) .  A diagrammatic indication of the method used for 
spreading and of the nature of the resulting film is given in figure 2. A more exact 

; Now at The Metal Box Go. Ltd., Technical Engineering Division, Borehamwood, He&. 
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indication of the shape of the meniscus in the region where the free surface forms 
is given also diagrammatically in figure 3 (see also figure l e ) .  

Early quantitative experiments were carried out by A. J. G .  Shaw (private 
communication) of the Research Department, Paints Division, Imperial Chemical 
Industries Limited, on a series on viscous liquids. Using circular cylindical rollers, 

Circular roller 
Direction I 

Square blocks fixed to roller 

- -bed Circular roller surface 

A Ribs A 

FIGURE 2. The ribbing of a spread film. 
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> L s  of waves 
FIGURE 3. Formation of free surface when ribbing occurs. 

of radii $, and 1Q in., he produced layers of thicknesses varying from 0-0005 to 
0.016 in. both by rolling and spreading. The viscosities of the liquids varied from 
about 5 to 300 P and the velocities of spreading and rolling were of the order of 
1-20in./sec. In  all cases of spreading and for relatively slow rolling he observed 
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that the emergent a m  was covered by regularly spaced lines of crests and troughs 
running parallel to the direction of motion of the roller. He was able to measure 
a characteristic wavelength for each set of conditions. In the case of rapid rolling 
the pattern became more confused with lines lying a t  varying small angles across 
the direction of motion. He found that for any given spreader (or roller) and given 
minimum gap width-in other words for any given geometrical configuration- 
these patterns were remarkably reproducible. The line spacing (wavelength) 
remained roughly constant whatever the translational velocity, U,, of the spreader 
(or roller) provided that it was sufficiently large to produce well-defined ribbing; 
as a result, he did not measure this velocity specifically. The patterns seemed to 
depend very little on the fluid used, provided that it was sufficiently viscous; there 
wm, nevertheless, a small systematic variation with viscosity. Altering the 
minimum gap width or the radius of the roller did, however, have a marked effect 
on the wavelength and this dependence was measured for the range of values 
mentioned earlier. An example of the relation observed between line spacing- 
expressed &B the number of crests per inch, no, and minimum gap thickness, h,, 
for a roller of 2 in. radius is shown in figure 4. The curves for three liquids both 
spread and rolled are given. 

Other experiments were also carried out by E. Pitts and J. Greiller (private 
communication) of the Research Department, Kodak Limited on a pair of 
rotating rollers separated by a small gap and partially immersed in a bath of 
viscous fluid. In this arrangement the fluid was carried out of the bath between 
the rollers, and then split into a layer on each roller, thus being returned to the 
bath as the roller rotated. In this way a steady-state system could be achieved. 
They found that for sufficiently low rates of rotation a uniform two-dimensional 
flow was obtained, and that as the rate of rotation of the rollers was increased, 
a critical value was reached at which the flow became unstable and a ribbed 
structure similar to that described above was observed. The wavelength of the 
wave structure obtained was found to decrease-apparently in a discrete series 
of jumps-as the rate of rotation was further increased. The peripheral roller 
speeds used by Pitts and Greiller were in general lower than any used by Shaw. 

Dimensional considerations suggest that in the experiments described above, 
the various forces acting can be characterized in the following way: 

viscous forces = O(,uU,/ht), 

inertia forces = O(pU$/h,), 

gravity forces = O(pg), 

surface tension forces = O(T/h%), 

where p is the density of the fluid, g is the gravitational acceleration, T is the 
surface tension of the fluid and U,, h, andp are as defined earlier. If h, is sufficiently 
small then viscous and surface tension forces dominate, and if further pU, is large 
compared with T then viscous forces alone dominate. The characteristics common 
to all the industrial observations on ribbing mentioned earlier were that the gaps, 
h,, were very small and that the fluids were very viscous. The experiments of 
Shaw were such that viscous forces dominated everywhere, while those of Pitts 

31-2 
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and Greiller were such that viscous and surface tension forces were of comparable 
effect, 

This suggests that a theoretical treatment should be based on the equations of 
slow viscous motion, neglecting inertia and gravity forces, and that the effects of 
surface tension should be included in the boundary conditions. 

0 25 50 75 

n 0  

(4 

h0 
5 

0 25 50 

n0 

( 6 )  

FIGUFCE 4. no, the number of crests per inch, as a function of ho, the minimum gap thick- 
ness in &a in., using a $ in. radius roller. (a )  Spreading. (b )  Rolling. 

We present here an analysis based on the hydrodynamic theory of lubrication, 
which is an approximate theory of slow viscous motion applicable to the flows we 
are considering. The effect of surface tension on the free-surface boundary condi- 
tion has to be introduced in a simplified, semi-empirical form, because of the 
limitations inherent in the lubrication equations. 
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We look first for a possible two-dimensional steady-state solution, that is a 
solution corresponding to a uniform plane emergent sheet. We find that the 
equations and boundary conditions we have chosen lead to a degree of arbitrari- 
ness in this so1ution.f Assuming, however, that one of this class of solutions will 
be relevant, we then study the stability of such flows to three-dimensional distur- 
bances of the type observed in practice. We find that the stability of the system 
is a function both of its geometry and of the single dimensionless parameter 
T/pU,; surface-tension forces exert a stabilizing influence on an otherwise wholly 
unstable flow. This general analysis is given in $2.  We obtain expressions for the 
amplification factor, s, as a function of wave-number, n, of the postulated 
disturbance. 

Flat glass plate L___t 
x t 

FIGURE 5. The wide-angled wedge spreader. 

In order to obtain solutions in terms of tabulated functions, a particularly 
simple geometrical arrangement is treated in detail in Q 3. This consists of a wide- 
angled wedge spreader, illustrated diagrammatically in figure 5. For any specific 
value of !P/pUo, and a suitably chosen value of b, (the point of furthest penetration 
of the meniscus), the value of n that maximizes s can be calculated. We assume 
that this is the value of n that would be observed in practice. 

Experiments have been performed in these laboratories using a wedge-shaped 
spreader to compare the results obtained experimentally for n with those predicted 
on the basis of the theory outlined above. These also are described in $3. The 
agreement is good for values of T/pU, between 0.1 and 10. 

It is concluded in $ 4  that the elementary analysis we have used involving 
surface tension is adequate to describe the ribbing that occurs when T/pUo is 
appreciable, but that other viscous effects, not included in the lubrication theory, 
would have to be considered in order to describe the secondary flow that takes 
place in the limiting case of TIpU, --f 0. 

2. General analysis 
The conditions encountered in flow under a roller or spreader, where the fluid 

is supposed incompressible, are precisely those to which the theory of lubrication 
applies (see, for example, Lamb 1932, Ch. XI). In  this approximation, designed 
to deal with the motion of viscous fluid contained in the narrow regions between 
nearly parallel moving surfaces, inertia and acceleration terms are neglected, 
while pressure variations in directions at right angles to the moving surfaces are 

t Pitts (1969) has developed an approximate analysis for predicting the point to which 
the meniscus will penetrate as a function of the dimensionless group TlpU,,. 
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assumed to be unimportant. This means that a two-dimensional flow (of the type 
shown in figure 6) can be represented by a one-dimensional model, while the more 
complicated three-dimensional flow that results from the ribbing considered in 5 1 
can be represented by a two-dimensional model. This approximation can be 
regarded as adequate except in the regions where a meniscus forms, e.g. the line 
x = b in figure 6. This is because the parabolic type of flow which is relevant for 
regions far from the meniscus, where the gap is completely filled with fluid, 
changes sharply, in the region close to the meniscus, into uniform flow (with a free 
surface) along the two separating surfaces. The latter flow also satisfies the 
lubrication equations, but in a trivial sense only. The length (in the x-direction) 

- a - L , - - l  
FIGURE 6. Section of flow in the narrow gap between two arbitrarily moving surfaces. 

of the region directly affected by the meniscus will be of the order of the gap width 
at that point and is therefore small compared with other lengths involved, such 
b or the line spacing on the emergent sheet.? 

In  this analysis we shall attempt to represent the whole effect of the meniscus 
formed at x = b by boundary conditions to be imposed on the lubrication 
equations at what we shall term a free boundary; this free boundary will for 
simplicity also be taken to be at x = b.  Our mathematical model (see figure 7) will 
therefore consist of two regions (neglecting for the moment the presence of a 
meniscus at x = -a) :  (i) x < b, where the gap is full of liquid and where the 
lubrication equations apply, and (ii) x > b, consisting of two fluid layers of 
constant width moving with uniform velocity separated by an air gap. 

Although changing discontinuously the flows in these two regions must be 
matched. This is the crux of the problem: we must choose two suitable boundary 
conditions for the lubrication equations. There must be a mass-flux boundary 
condition which equates the amount of fluid reaching the free boundary from 
region (i) to the amount of fluid leaving the free boundary into region (ii). There 
must also be a pressure boundary condition, the pressure in region (i) at the free 
boundary being balanced by the sum of the (constant) pressure in region (ii) and 
the effect of surface tension forces acting on the free boundary. The particular con- 
ditione adopted in the following analysis will be discussed when they are chosen. 

t This remark is based on empirical observations. 
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2.1. Steady two-dimensionuljtow 
To preserve the utmost generality in this treatment we consider the arrangement 
shown diagrammatically in figure 6. The two moving cylindrical surfaces are 
given by y = hl(x) and y = h,(x), where ht;(x) and hh(x) are everywhere small c m -  
pared with unity. (The primes denote differentiation with respect to 2.) The 
tangential velocities of the two surfaces are given by U, and MU, as indicated 

Y 

t 

Free boundary 

FIGURE 7. Mathematical model of flow shown in figure 6. 

(0 < M < 1). Using the usual assumptions of lubrication theory, we find that in 
the steady state the velocity in the x-direction must be of the form 

where E(x) remains to be determined. The total mass flux, U(x) ,  between the two 
surfaces for unit width in the z-direction (perpendicular to the x- and y-axes) at 
a section x is given by 

By continuity this must be constant, and if tl is the ultimate film thickness as 
x -+ 00 on surface 1 and t, the thickness on surface 2, then 

This is our first boundary condition. (tl and t ,  are the film thicknesses used for 
region (ii) in our model.) 

U ( X )  = Uo[tl + MtJ. (3) 

The equation of motion is given by 

E (x), 2 - 8% 
dx - e@ = - [h,(x) -h1(x)]2 (4) 

wherep is the pressure andp the dynamic viscosity. If we assume that the pressure 
in region (i) at the free boundaries is known, then equation (4) may be integrated 
using (2) and (3) to give 
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Unless further information is provided a large degree of indeterminacy remains, 
for a, b, t,, t,, are all as yet arbitrary and are related by only one equation. 

One reasonable simplification is to suppose that a -+ 00 and that p (  - a )  +. 0. 
The pressure outside the liquid is taken to be zero. This corresponds to the case 
where the surfaces are emerging from a large reservoir of fluid, and is in fact 
reasonably representative of all the cases that have been examined @hove. 

But the indeterminacy still remaining in the specification of the section at which 
the free boundary-or meniscus-forms cannot be so simply resolved. The 
obvious refinement to attempt would be to replace the lubrication equations (1)- 
(4) by the Stokes slow-motion equations, and seek solutions of these using exact 
free surface boundary conditions on both velocity and stress. Using a stream 
function, this leads to the biharmonic equation. Unfortunately, the equation for 
the surface remains an unknown variable, and it is by no means certain that the 
solution of this more complicated equation would remove the indeterminacy. 

Pitts (1959) has described an approximate method for resolving this in- 
determinacy that he has applied with some success to the symmetric case of two 
circular rollers, where h,(x) = -h2(x)  and M = 1. In this he makes use of the 
experimentally observed fact that the meniscus is parabolic near its intersection 
with the axis of symmetry; this equivalent parabola he characterizes by r ,  the 
length of its latus rectum. He then looks for that value of b (see figure 6) which for 
suitable r makes the lubrication solution (1) (written in terms of a stream function) 
satisfy the exact stress boundary conditions on the parabolic surface in the region 
close to the axis of symmetry. The predicted values of b (for values of T/pU, 
sufficiently high for the two-dimensional flow to be stable) were compared with 
experimental observations and fairly encouraging results obtained. Unfortu- 
nately, it  is not clear how such a method could be applied to the asymmetric case 
of spreading, and this will not be attempted in 5 3. 

Hopkins (1957) has suggested that the meniscus will form at the first stagnation 
point (in the case of a sheet moving between two rollers); this seems to be con- 
firmed for the case T/pUo -+ 0 both by experimental results and by the approxi- 
mate theory of Pitts. 

Experimentally, the value of b is found to decrease as U, is increased (for fixed 
T andp) and tends to an asymptotic value, b,. This general result is to be expected 
even on the basis of our approximate treatment, because the lubrication solution 
yields a region of reverse flow for all b greater than some value b,, b, being defined 
by the geometry alone; we would therefore expect the meniscus to be drawn 
towards the point b,, the more so as pUo increases with respect to T, and indeed 
it has been roughly verified that b, + b,. 

One further remark can be made about the variables in (5) for the particular 
arrangements that have been studied. For rolling, M = 1 and by symmetry we 
could put t ,  = t,, while for spreading, M = 0 and t, = 0. Thus if we fix b, and 
assume that p(b )  is known, then t, is given by ( 5 )  in terms of known quantities, 
and E ( x )  in (2) can be calculated. In  this way, specification of b (assuming 
a -+ 00) leads to a complete solution for the velocity u(x, y) in terms of lubrication 
theory. Little has been said about p ( b )  so far: the simplest assumption is to put it 
equal to zero. However, allowance can be made for surface tension effects as will 
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be seen in later sections, and indeed the inclusion of surface tension effects will 
be critical to the stability analysis that we shall carry out in the following 
subsection. 

2.2. The growth of small lateral disturbances 

We now superpose on the given basic two-dimensional steady flow infinitesimal 
lateral disturbances that are chosen to correspond to those described in $1. 
Since the equations describing the motion are linear there will be no interaction 
between the two motions in the main body of fluid. Hence it is the particular choice 
of boundary conditions that will be of critical importance. 

We therefore now consider a non-steady velocity field given by 

where ZL and w are velocities in the x- and z-directions, respectively. There will be 
associated mass fluxes 

Continuity imposes the condition 

au aw 
ax aZ -+-- = 0, 

while the equations of motion are given by 

We now characterize the disturbance by supposing the free boundary to form 

b = b,+ct?tcosnz, (13) 
at the points 

where c 6 1 and n is arbitrary. We suppose in consequence that the mass flows 

(14) 
will be given by 

(15) 

K(x ,  z, t)  = E(z)  - cF(x)  2f cos nz, 

J (x ,  z, t )  = cG(z) estsin nz, 

where E(x)  is defined by (2), (3) and (5). By substituting (14) and (15) into (11) 
and using (2) and (3), we obtain from the continuity relation 

( 16) 
a -{(h,-h,)P} = nC(h,-h,); 
ax 
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by using the equations (1  2) and eliminating p we get 

where h = h,-h,. Finally, we obtain the following second-order linear dif- 
ferential equation for G(x) ,  

We must now choose two boundary conditions to be imposed at the free boundary 
given by (13). 

The first boundary condition will be obtained by considering the force balance 
across the free boundary. We can without loss of generality put p = 0 in region (ii). 
If we consider the two-dimensional case represented in figure 7, then the relevant 

(19) 
relation is given by 

wherep(b) refers now to the pressure in region (i). This relation is consistent with 
the lubrication hypothesis in that inertia terms are neglected, and with the con- 
cept of a free boundary, thus avoiding any viscous components of stress.? The 
three-dimensional case must include surface tension components that act in the 
zz-plane and by using the simplest possible representation we obtain 

p(b)h(b)  = -2T ,  

2 + ( h - t , - t 2 ) -  

If we now linearize in c this pressure boundary Condition (20) becomes 

We may further assume that 

p (  -a)  = 0, a( -a) = 0, F( -a)  = 0. (22) 

This is in keeping with the observation that the lateral variations in layer thick- 
ness of the emerging film have no effect on the flow of the fluid in front of the roller 
or spreader, and the further observation that the nature of the emerging film is 
independent of the conditions existing in front of the roller or spreader provided 
only that a is large enough (i.e. a % b) .  If we therefore integrate the fist  of the 
equations of motion (12) ,  linearize in c, use relations (6), (14) and ( 2 1 )  and subtract 
out the steady component satisfying (5), we derive our first boundary condition 
on the time-dependent component. This is 

It is here that dependence on the parameter TIpU, is introduced. 

Taylor 1968). 
f This simplication was suggested originally by Sir Geoffrey Taylor (see Saffman & 
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A second boundary condition is obtained by relating the rate at which fluid 
reaches the free surface to the rate at which it is carried away, and to the rate at  
which the free surface advances. We write 

where t: and t,X are the instantaneous thicknesses of the layers formed on surfaces 1 
and 2 along lines z = const. (These must not, for the present, be confused with 
the values tl and t ,  considered in the previous section, since a basic unperturbed 
flow may be possible for one vaIue of b only.) For any value of z, the amount of 
fluid instantaneously arriving at  b is given by 

+Uoh( b )  [ 1 + M + ${E(b)}T *c{F(b)) esf cos nz]; 

the amount instantaneously carried away by the surfaces 1 and 2 is given by 

U,[m,(b) f Mm,(b)l Mb) ;  
the rate at which the free surface advances is given by 

ab 
- = sc eat cos nz. 
at 

Mass conservation therefore requires that 

ab 
(1 - m, - m,) h - = &Uoh[l + M  + BE + +cP est cos nz] - Uo(m, + Mm,) h.t 

at 

Linearizing and using the steady-state result given by (2) and (3), we get 

at3 the second boundary condition. Here the function E,  and hence E’, is 

(24) 

taken 
to be defined uniquely-by (2), (3) and (13) whatever m1 and m,. Unfortunately, 
our whole analysis so far does not enable us to say anything definite about 
m;(bo) and mb(bo) though we can suppose m,(bo) and m,(bO) to be known. However, 
if we use (24) only to select the most unstable wave-number, i.e. that value of 
n that maximizes s, then the value of the constant term that remains unknown 
is not relevant.$ It is only when we use (24) to provide criteria for absolute 
stability that we need to evaluate this constant. 

If we take m, and m, to be given as functions of b, by equating t f  and tg to tl 
and t,, for all b, then relation (24) becomes simply 

This is equivalent to supposing that all basic unperturbed flows are initially 
possible. If, on the other hand, we take mi(bo) = mL(bo) = 0, which corresponds 

t This relation assumes that velocities in the z-direction are not transmitted across the 
free boundary. This approximation will be valid provided the wavelength 2nln is large 
compared with h. This has been the case in all our observations. 

$ This supposes that mi and mi are to first order in c independent of n. 
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to the supposition that the shape of the free surface in the xy-plane for all b will 
be everywhere geometrically similar, then (24) becomes 

(24, ii) 

In  the application of the theory made in $ 3  we shall use both of these criteria. 

3. The wedge-shaped spreader 
In  order to study the consequences of the analysis given in the previous section, 

a particular case, that of a wide-angled wedge, has been worked out in detail and 
the results compared with those obtained experimentally. The relations (24, i) 
and (24, ii) have been calculated for various values of T/,uU, and b, regarding 
s as a function of n; ,u, U, and T can be taken as adjustable parameters; b, is not 
prescribed by our elementary theory, but it has been measured experimentally 
for various values of TIpU,. It must be remembered that the analysis of fs 2.2 is a 
perturbation analysis and strictly speaking refers only to the growth of small 
disturbances on a steady two-dimensional flow. If the initial disturbances are 
very small and are taken to include components at all wave-numbers, then it is 
reasonable to assume that those wave-numbers which maximize s for given b, 
and TlpU, will dominate the early stages of the instability. But it is not necessarily 
true that the ultimate steady secondary flow that is attained will be characterized 
by the same wave-number, although other examples of instability in hydro- 
dynamics suggest that it may be. Nevertheless, since we are unable to carry out 
a full analysis of the secondary flow, we are bound to carry the comparison as far 
as we can-on the supposition that agreement between perturbation theory and 
observation in a range strictly outside that to which perturbation theory applies 
is better than no agreement at all. Ideally we should restrict comparison to those 
values of TI,uU, for which the flow is just unstable; unfortunately, this range, for 
the linear dimensions chosen in our experiments, corresponds to that region where 
gravity forces become appreciable as an additional stabilizing factor. In view of 
all these uncertainties, it is perhaps rather surprising that the agreement obtained 
was so good. 

3.1. Analysis 
A diagram of the wedge used is given in figure 5. The equation for the gap width, 
h(x), is given by 

The free boundary is supposed to form at x = b.  (This corresponds to the case 
h,(x) = 0, M = 0, t,  = 0, in $2.1.) We write t ,  = t ,  h = t/h,, k = ct/h,. 

h(x) = h,+alx(. (25) 

From ( 1 )  we have 

3[2t - h(x)]  and from (2) and ( 3 )  
E(x) = 

h ( 4  
For steady-state flow, we suppose that a --z co, p(a)  -+ 0, and that p ( b )  is given by 

om 
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This is the assumption that we introduced earlier in 32.2. The pressure condition 
(5) becomes 

+ 2 - 2 4 ,  (29) 
1 ---= ___-___ 

3U0 p ( 1  +kb) ( 1  +kb)2 ( 1  +kb) 

and thus E(b) can be written 

Y (30) 
-6(1+ kb)'+ 12(1+ kb) - 3 +  7 

Z ( i T % b ) 2 -  1 
E (b )  = 

where 
2Ta 

7=- 
PUO 

and will be used henceforth as the relevant dimensionless number characterizing 
the relative effect of viscous and surface tension forces. 

The basic equation for small perturbations, equation (18),  becomes 

G' - n2G = 0. 
kx 

- W l W )  
For x > 0, we write 1 +kx  = ky to give 

n2G = 0 (y > k-I), 
d2C 1dG 
dyZ-idy- 

and for x < 0, we write 1 - kx  = k< to give 

These equations have as general solutions 

where I, and K ,  are modified Bessel functions. If we apply boundary condition 
(22), then as x -+ - 00 and -+ co, G must --f 0. Hence A, = 0. Also at x = 0, 
G and G' must be continuous. Hence 

This yields a unique relation between A ,  and B,. Remembering that we are 
supposing the free surface to form at the point b = b, + c est cos nz, the pressure 
condition ( 2 3 )  yields the relation 

(i + b,) [Al I,(; + nb,) + BIKl( :  + nb,)] 

2 l + ~ ( l - m ( b , ) ) ( ~ + n b o )  n I], (35)  

where E(b,) is defined by (30) and m(b,) = Q[E(b,)+3]. Thus A, and B, are 
completely specified in terms of b,, 7 and n, using (34) and (35), giving 
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\36) 
The equations (24, i) and (24, ii) become 

u, PI ((; + nb,) I,(; + nb,) - 2 4 ;  + ”6,)) 
+ B1( (; + nb,)K,(; + nbo) + 2 4  + nb,))] 

S =  (37, i) 

and 
6nP - m(b0)l 

uO[ 2nE’(bo) + Al( (f + nb,) I, (i + nb,) - 21, (f + nb,) ) 

S =  
+ B1( (; + nbo) 4 3 ( ;  + nb,) + =,(; + mbo))], (37, ii) 

6 4 1  -m(b,)l 

where A,  and B, are given by (36). 
Because of the arbitrariness in b,, we are not able to present complete stability 

diagrams, that is curves for s as a function n and 7,  from theoretical considerations 
alone. Thus we cannot predict in advance that the motion will always be stable 
for all 7 > some Torit and unstable for T < 7crit, even though experimental observa- 
tions suggest that this is true. Our mathematical model must use empirical 
information if it  is to be compared with experimental results. 

Some typical examples of the curves obtained from (37, i) and (37, ii) are given 
by figure 8. Three separate values of 7 have been chosen; for each of these, values 
of b, which correspond to those observed experimentally (for particular values of 
a and h,) have been used. Figure 9 attempts to show how n(smax) (where 7&(8max) 

refers to that value of n that maximizes 8) varies with b, for fixed 7 :  it  is a fairly 
typical curve and shows how little n(s,ax) varies over quite a wide range of b, 
which includes the observed value. 

It can be seen that for all values of b,, the hypothesis (i) leads to a more unstable 
situation than hypothesis (ii); this conclusion is fairly obvious on physical grounds 
since the second hypothesis supposes that increasing b, increases t much more 
rapidly than does the first. 

The behaviour of s in the limit n = 0 is of some interest; the relevant relations 
that follow from (37, i) and (37, ii) are 

and 
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(38, i), and hence our mathematical model, implies that for all 7, there exists a 
bcrit such that s > 0 for all b, < bcrit, while (38, ii) implies a range of instability 
that is contained within that obtained using (38,i). It can be argued that our 
supposed steady-state two-dimensional flow should never be characterized by a b, 
lying within the range of instability for zero wave-number disturbances, and 
indeed it was found that the observed values of b, always satisfied this condition. 

31 I I I I 1 
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0 0 1  0.2 0 3  0.4 0 5  

FIGURE 9. n(smax)/k 8s a function of b, for 7 = 0.1. 

3.2. Experimental results 

For the pixrposes of experiment a compromise had to be made between . 
of h, and a sufficiently large to allow of accurate machining and sufficient1 
to ensure the validity of the lubrication equations and of our free bo 
hypothesis. With this in mind, the values h, = 0.004 in. and CL = 1/20 were I 

Furthermore, the spreader could only be of limited size. The wedge was 
nated at x = 1 in. and x = - I in. (using the notation of figure 5) by vertical 
and was some 6 in. wide in the z-direction. It was drawn, at meaaured con1 
speed, across a plate-glass sheet by a geared-down electric motor, a side fl, 
ensuring that its motion was perpendicular to planes x = const. Instantane 
flash photographs were taken from underneath the plate to measure b,. 
example of which is given in figure 1 e ;  photographs taken from above by tr: 
mitted light were used to measure the line spacing, and an example of the 
given in figure 1 d.  

Experience with circular rollers of different lengths suggested that the lii 
tion on size in the z-direction would not have any appreciable effect, while 
truncation of the wedge at  x = - 1 was only expected to have noticeable effec; 
the lower speeds. This can be seen by solving equation (32) using a non-infinite 
value for a in (22); the effect is nbt large provided n is not small. The patterns of 
lines obtained, although not absolutely regular on any photograph, were repro- 
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ducible and yielded satisfactory estimates for n in each case. Three fluids were 
used; they are tabulated with their relevant physical properties below. 

Surface 
Viscosity tension 

Liquid (poise at 23 "C! (c.g.s. units) 
I.C.I. silicone oil F 110/1000 14.5 21 

B.D.H. glycerol diluted with water 2.7 57 
Analar glycerol 11-6 63 

7 

FIGURE 10. N ,  the number of crests per inch, as a function of .r-comparison between 
calculated range of instability and observed values. ---- , calculated neutral stability 
curve; __ , calculated m(smax); I, glycerol; 3P; I, glycerol 12P; I, silicone oil 15P. 

The combined results are presented in figure 10 were n(ohserved) is plotted as a 
function of 7. The values of bo(observed) are plotted as a function of T in figure 11. 

Owing to the large variation of viscosity with temperature and with water 
content of glycerol, and to the difficulty of preventing surface contamination and 
hence a reduction in effective surface tension, the calculated values for T are 
subject to a rather large margin of error, possibly even 20 yo in some cases. This 
does not mean that quantities were not measured accurately or that reasonable 
precautions were not taken where necessary, but it allows for the occasions when 
conditions happened to change between measurements of relevant physical 
quantities. Indeed, it is worth pointing out that extreme care was taken to polish 
the glass plate and to clean the metal surfaces on the wedge before each experiment 
and that fresh glycerol was used every time. 

3.3. Comparison of theory and experiment 

Because the analysis of 8 2.1 does not premibe a value of b, for any particular 
choice of r ,  we have used the observed values of b, as a starting point for the 
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perturbation calculations. Figure 11 shows the results obtained and compares 
them with the values that would have been predicted supposing the free surface 
to  form at the point where reverse flow is just about to take place, namely where 
E(b,) = - 1. It is seen that as T decreases the two curves tend to coincide. This is 
in agreement with the observations of Pitts and Greiller on two revolving rollers 
and is the analogue of Hopkins's postulate. It can equally be verified that b, > b, 
(see $3.1) in all cases. 

I 0.1 001 

7 

FIGURE 11. b, 'us r-observed values. 

The results of the calculations based on (38, i) and (38, ii) are shown in figure 8, 
for three particular values of T (T = 1,O-1 and 0.01) and appropriate values of b,. 
These give an indication of the large range of wave-number that is likely to be 
unstable. A more comprehensive indication of the predictions is given in figure 10 
where n(smax) and the entire range of unstable n are plotted as functions of 7. The 
width of the band is a function of the form assumed for m'(b) in (37) and in this 
figure the means of values obtained by hypotheses (i) and (ii) have been plotted. 
Also shown on this figure are the observed values of n, mentioned in the previous 
section. The agreement over a wide range of 7 is encouraging. It will be noticed 
that neither the calculations nor the experimental observations are given beyond 
the point T = 1. From the experimental point of view it was clear that a critical 
value did exist for r (7 N 3) above which the two-dimensional flow was stable; 
however, the amplitude of the ribbing for values of T just below this critical value 
was so small that measurement of wave-number became extremely difficult; this 
also made it difficult to determine the critical point exactly. Also, in our pre- 
liminary discussion of various forces that might be relevant, we showed by 
dimensional considerations that gravity forces would be small compared with 
viscous and/or surface tension forces, provided h, were small enough. This result, 
like many dimensional arguments, is only partially true. If U, becomes sufficiently 
small, then the relevant length scale is not h, but h(b,), and the ratio between 
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viscous and gravity forces is given by pUo/h2pg and between surface tension and 
gravity forces by Tlh2pg. In  our particular observations, when 

T = 1, pUo/h2pg = 1, T/h2pg = 10, 

and gravity forces are thus of the same order of magnitude as viscous forces. To 
emphasize this fact we have deliberately truncated figure 10 a t  r = 1. 

As r tends to zero, the observed value of n is seen to tend to a constant value. 
Because of the extremely high value for viscosity, or the extremely high value for 
velocity involved at low values of r ,  reproducible steady flows were difficult to 
obtain with the given length of glass plate. In  fact, b, was observed to vary 
between experiments; interestingly enough the values recorded for n varied 
simultaneously in the manner suggested by figure 11. 

4. Discussion 
The comparison made in $3.3 for the special case of the wedge-shaped 

spreader suggests strongly that a reasonable theoretical explanation has been 
given for the formation of the observed line structure where r > 0.03. The flow 
can be interpreted primarily as a balance between pressure and viscous forces, 
with surface tension exerting, through the boundary conditions, a stabilizing 
influence. In  principle, exactly the same analysis can be carried out for arbitrary 
functions h,(x) and h2(x) and for arbitrary values of M .  However, even in the case 
of circular rollers, the complete solution of equation (18) does not seem readily 
expressible in terms of tabulated functions, and a complete numerical solution 
would be laborious. It is, nevertheless, reasonable to suppose that the results of 
Pitts and Greiller, where T/pU, = O( l), could be explained using such an analysis. 
The results of Shaw are to be interpreted as corresponding to the region 7 + 0. 
It is clear that for this range of values of T/pU,, the analysis is unable to represent 
the secondary flow that occurs; the predicted values of n(smax) tend to infinity and 
no longer correspond to observed values. This aspect of the problem was discussed 
in an earlier investigation (Pearson 1957), where it was concluded that the flow 
pattern in the columns of fluid (figure 3) exerts a dominant influence on the line 
spacing. 

From the purely practical (industrial) point of view, the relevant question to 
be answered is whether conditions can be so chosen that a stable two-dimensional 
flow is obtained even for small T/,uUo. (The trivial answer that a stable flow can be 
obtained for sufficiently small U, is of little assistance.) In  most contexts the 
problem will be tackled and probably solved (or, if not, circumvented) by 
methods of trial and error, since the possible range of variation of physical 
circumstances will be strictly limited in any one case. 

One method that proves efficient was mentioned in an earlier investigation 
(Pearson 1957). The roller or wedge is replaced by a flat plate ending in a knife 
edge. This plate is inclined at a small angle to the horizontal such that h'(s) is 
negative everywhere, and such that fluid emerges at the point of minimum gap 
width. Clearly the analysis given above cannot be applied to this case since b, will 
coincide with the end of the plate and V(z) will be discontinuous at b,. On the 
other hand, a simple physical argument in terms of pressure can be given to 
explain why the flow should be unstable in some cases and stable in others: 

32-2 
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consider the flow shown in figure 7 and let b, represent the position of the free 
boundary in a steady two-dimensional flow; if the pressure gradient dpldx within 
the fluid is negative near the point x = b, in the steady two-dimensional case 
then the result of part of the free boundary moving up to the plane 

z = bo+6b 

is that the induced pressure distribution forces fluid laterally towards these 
points. In  other words, it  tends to provide just the excess of fluid that is required 
to maintain the disturbed boundary. Now, in the case of the roller or the wedge, 
dpldx is negative and instability is observed. But where h’(bo) is negative, as we 
propose using a knife edge, dpldx is positive and the flow is inherently stable. 

Another technique that has been employed is to make M = - 1. This again 
puts the physical circumstances outside the scope of the analysis in $2 because 
there is now no clear distinction between an upstream and a downstream side. 
Nevertheless, by putting t,  = t ,  one can obtain a steady solution in which 
E ( x )  = 0 and by following through the perturbation analysis, it  can be shown that 
the flow is stable provided that d2/dx2( 1 / h )  is negative at  x = b,. No comparison 
with observation has yet been made in this case. 

An incidental result of this work was that it suggested a new explanation for 
brush marks. In  the past, it had commonly been supposed that these irregu- 
larities were due to the nature of the brush itself, formed as it is from a large 
number of bristles of roughly equal length, the whole assembly being relatively 
pliable. It now seems as if this is not so and that brush marks are merely a further 
manifestation of a phenomenon common to most spreading devices. 

Since much of the preliminary work on this problem was carried out in the 
Research Department of Imperial Chemical Industries Limited, Paints Division 
it is fitting that I should first acknowledge the stimulus given and information 
provided by Mr C. I. Snow, Mr N. D. P. Smith and Mr A. J. G .  Shaw of Paints 
Division. 

Next I wish to express my indebtedness to Sir Geoffrey Taylor who has been 
kind enough to discuss the problem on numerous occasions and to make available 
many pieces of information that he has obtained on this and related matters in 
recent years. 

Finally, I wish to thank those members of these laboratories who have helped 
me with the experimental arrangements-in particular, Miss E. M. Gibbens, who 
assisted with measurements and calculations, Mr K. D. Cooper who was re- 
sponsible for most of the photographic arrangements, and the workshop staff 
who made the spreaders and rollers used here. 

(6b > 0 )  
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